Journal of Organometallic Chemistry, 179 (1979) C5-C6 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

STEPWISE OXIDATIVE DECARBONYLATIONS OF ORGANOMETALLIC CATIONS OF IRON

STEPHEN G. DAVIES

Institut de Chimie des Substances Naturelles, C.N.R.S., 91190 Gif-sur-Yvette (France) (Received July 31st, 1979)

Summary

Controlled stepwise removal by nucleophilic oxidants of one or two carbon monoxide ligands from $[(\eta^5 - C_5 H_5)Fe(CO)_3]^+PF_6^-$ with replacement by another ligand (L = phosphine or phosphite) is demonstrated.

An attractive alternative to the photolytic or thermal displacement of carbon monoxide from transition metal carbonyl complexes is oxidation using a nucleophilic oxidant. This process has however seldom been exploited [1] except for the complete destruction of organotransition metal complexes for the recovery of organic ligands [2]. We were interested in developing a general synthesis of cationic organotransition metal complexes containing several phosphine ligands. We anticipated that a nucleophilic oxidant in the presence of a ligand L would readily react with cations containing carbon monoxide ligands to remove CO as CO_2 and replace it with L. One would expect also that for cations containing several CO ligands this process would be stepwise: the more CO ligands are replaced by L the more electron-rich is the cation and thus the slower the attack by the oxidant.

$$[\mathsf{M}]_{CO}^{+} \xrightarrow{\mathsf{CO}} \underbrace{X^{+} - \mathbf{O}_{\mathcal{L}}^{-} \mathsf{L}}_{-CO_{\mathcal{L}}^{-} \mathsf{X}^{+}} \quad [\mathsf{M}]_{CO}^{+} \xrightarrow{X^{+} - \mathbf{O}_{\mathcal{L}}^{-} \mathsf{L}} \quad [\mathsf{M}]_{\mathcal{L}}^{+}$$

SCHEME 1

- -

We have discovered that it is possible to replace one of the carbon monoxide ligands of $[(n^5 - C_5H_5)Fe(CO)_3]^+PF_6^-$ (I) by a ligand L in this manner with dimethyl sulphoxide as the oxidant. The cation I and L were dissolved in dimethyl sulphoxide under nitrogen and stirred at 20°C for 10 min. Work-up gave the cations II. Cations II with L = PPh₂(CH₂)_nPPh₂ (n = 2, 3), PPh₃ and P(OMe)₃ were prepared in this way. Prolonged exposure to dimethyl sulphoxide in the presence of excess L leads to slow replacement of a second carbon monoxide ligand.

A second carbon monoxide ligand may be readily replaced by using Me₃NO as oxidant. The complexes II and L were dissolved in acetone and treated with an excess of Me₃NO hydrate. Work-up gave III. The reaction with Me₃NO appears to be instantaneous at 20°C. Rapid removal of the second carbon monoxide may also be achieved using alkaline hydrogen peroxide (alk. H₂O₂). Complexes III may also be prepared directly from cation I with two equivalents of L and an excess of Me₃NO or alkaline hydrogen peroxide as oxidant. Cations III with L₂ = PPh₂(CH₂)_n PPh₂ (n = 1, 2, 3), (PPh₃)₂ and [P(OMe)₃]₂ were prepared by these methods.

SCHEME 2. (i) L = dimethyl sulphoxide; (ii) L = Me₃NO or alk. H_2O_2 ; (iii) 2L = Me₃NO or alk. H_2O_2 .

All of the above reactions were essentially quantitative. The methods described above for the preparation of the cations $[(\eta^5-C_5H_5)Fe(CO)_2L]^+PF_6^-$ and $[(\eta^5-C_5H_5)Fe(CO)L_2]^+PF_6^-$ are more efficient and practically easier than existing methods. For the phosphite complexes the usual complications arising from Michaelis—Arbuzov type rearrangements of phosphite complexes to phosphonate complexes [3] are avoided.

References

- 1 Y. Shvo and E. Hazum, J. Chem. Soc. Chem. Commun., (1975) 829; B.F.G. Johnson, J. Lewis and D. Dienerd, J. Ozranomski, Chem. 145 (1978) Ca
- D. Pippard, J. Organometal. Chem., 145 (1978) C4.
- 2 Y. Shvo and E. Hazum, J. Chem. Soc. Chem. Commun., (1974) 336.
- 3 R.J. Haines, A.L. Du Preez and L.L. Marais, J. Organometal. Chem., 28 (1971) 405.